
Non-Oblivious Local Search1

• Usually in a local search algorithm for a certain problem, one moves from a solution to a “neighbor-
ing” solution if it improves the cost of the solution. In certain situations, moving to a neighboring
solution which improves a different but related function can actually lead to a better approximation
factor. This interesting idea is called non-oblivious2 local search in the literature. We illustrate this
using the Max-2SAT problem.

• In the Max-2SAT problem we are given a 2SAT formula. A 2SAT formula φ has m clauses on n
variables where each clause consists of 2 literals. A literal is a variable or its negation. Given an
assignment of the variables to {true, false}, a clause is satisfied if one of the literals is satisfied. The
objective is to find an assignment which maximizes the number of satisfied clauses.

For example, if
φ = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3)

then the assignment (x1, x2, x3) = (false, true, true) satisfies the second and third clause out of the
above 4. On the other hand (true, false, true) satisfies all 4 clauses.

It is known that there is a linear time algorithm to test whether a 2SAT formula is satisfiable or not, that
is, checking if opt = m or not. However, the Max-2SAT problem is NP-hard. Below is a (natural)
local search algorithm for the same.

• A Local Search Algorithm.

1: procedure MAX-2SAT LOCAL SEARCH(2SAT formula φ):
2: Begin with an arbitrary assignment of the variables x = (x1, . . . , xn).
3: while true do:
4: If there exists a variable xi such that swapping its value increases the number of

satisfied clauses, do so.
5: Otherwise break.
6: return x.

Theorem 1. MAX-2SAT LOCAL SEARCH returns a 2
3 -approximation.

Proof. In fact, we will show something stronger : the local optimal assignment satisfies≥ 2m
3 clauses.

A clause is satisfied if one or both its literals evaluate to true. Given a variable xi, letAi be the clauses
c such that c currently evaluates to true only because of xi. More precisely, if xi is currently true, then
Ai = {(xi ∨ β) : β eval. to false}. If xi is currently false, then Ai = {(xi ∨ β) : β eval. to false}.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 8th January, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2I am not sure why this name is used. Non-obvious local search would probably be a better choice.

1

Note that, by definition, for two different variables xi, xj , we have Ai ∩ Aj = ∅. Therefore, if alg
denotes the number of satisfied clauses, we have

alg ≥
n∑

i=1

|Ai| (1)

Next, let Bi be the clauses c such that c contains xi but c evaluates to false. That is, if xi is cur-
rently true, then Bi = {(xi ∨ β) : β eval. to false}. If xi is currently false, then Bi = {(xi ∨ β) :
β eval. to false}
When we flip the assignment of xi, the clauses inAi become unsatisfied and the clauses inBi become
satisfied. All remaining clauses retain their state. Local optimality implies

∀1 ≤ i ≤ n : |Ai| ≥ |Bi| (2)

Now consider a clause c = (α ∨ β) which is not satisfied by x. Note that c is in precisely two Bi’s
one corresponding to α and one corresponding to β. For instance if c = (x1 ∨ x2), then c ∈ B1 and
c ∈ B2. Therefore, we have

2 · (m− alg) =

n∑
i=1

|Bi| ≤︸︷︷︸
(2)

n∑
i=1

|Ai| ≤︸︷︷︸
(1)

alg ⇒ alg ≥ 2m

3

• A Non-Ob(li)vious Local Search Algorithm. Given an assignment x of the variables, define the
following quantities. n0(x) counts the clauses that have both literals negated by x. n1(x) counts
the clauses that have exactly one literal negated by x. n2(x) counts the clauses which have none of
the literals negated by x. Note that the “value” of x, that is the number of clauses satisfied by x is
precisely val(x) = n1(x) + n2(x). A different way of stating the local search algorithm from the
previous bullet point was : flip a variable if it increases val(x).

The non-oblivious local search flips a variable if it increases a (slightly) different function of x. Define

Φ(x) =
4

3
· n2(x) + n1(x)

1: procedure MAX-2SAT NONOB LS(2SAT formula φ):
2: Begin with an arbitrary assignment x of the variables
3: while true do:
4: If there exists a variable xi such that swapping its value increases Φ(x)
5: Otherwise break.
6: return x.

Theorem 2. MAX-2SAT NONOB LS returns a 3
4 -approximation.

Proof. Indeed, we show that the final x satisfies 3m
4 clauses.

Fix a variable xi and partition the clauses containing xi into four sets.

2

– Ai are the clauses where both xi and the other literal evaluate to true.
– Bi are the clauses where xi evaluates to true but the other literal evaluates to false.
– Ci are the clauses where xi evaluates to false but the other literal evaluates to true.
– Di are the clauses where both xi and the other literal evaluate to false.

Now, when we flip the assignment of xi to get the assignment x′, then the change in potential can be
described by the four sets above

Φ(x)− Φ(x′) =

(
4

3
· |Ai| − |Ai|

)
+ |Bi|+

(
|Ci| −

4

3
· |Ci|

)
− |Di|

Since x, is locally optimal, we get that the above RHS is ≥ 0 for all i. Therefore,

∀1 ≤ i ≤ n, |Ai| − |Ci|
3

+ |Bi| ≥ |Di| (3)

We now make three more observations, and then the rest would be arithemetic. Let alg be the value
of x. Note, alg = n1(x) + n2(x).

–
∑n

i=1 |Di| = 2(m− alg), since every unsatisfied clause lies in precisely 2 different Di’s.

–
∑n

i=1 |Bi| =
∑n

i=1 |Ci| = n1(x).

–
∑n

i=1 |Ai| = 2n2(x).

Therefore, if we add (3) for all 1 ≤ i ≤ n, we get

2

3
· n2(x) +

2

3
n1(x)︸ ︷︷ ︸

= 2alg
3

≥ 2 · (m− alg) ⇒ alg ≥ 3m

4

Notes

The non-oblivious local search algorithm above (and the term itself) is from the paper [4] by Khanna,
Motwani, Sudan, and Vazirani. This paper considers other examples where choosing a different function
to move locally can help. There are not too many examples in the literature of non-oblivious local search
algorithms. A paper [1] studies this in the context of graph and hypergraph coloring, although the paper
itself is not easy to locate. A more recent famous example is that of maximizing a monotone submodular
function f(S) subject to the constraint that S is an independent set in a matroid. The paper [3] by Filmus
and Ward give a non-oblivious local search algorithm whose locality ratio is (1− 1/e). We point the reader
to Ward’s thesis [5] for more details. Finally, we mention a very new result [2] by Cohen-Addad, Gupta,
Hu, Oh, and Saulpic giving a non-oblivious local search for k-median.

3

References

[1] P. Alimonti. Non-oblivious local search for graph and hypergraph coloring problems. In International
Workshop on Graph-Theoretic Concepts in Computer Science, pages 167–180, 1995.

[2] V. Cohen-Addad, A. Gupta, L. Hu, H. Oh, and D. Saulpic. An improved local search algorithm for
k-median. arXiv preprint arXiv:2111.04589, 2021. To appear in SODA 2022.

[3] Y. Filmus and J. Ward. Monotone submodular maximization over a matroid via non-oblivious local
search. SIAM Journal on Computing, 43(2):514–542, 2014.

[4] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of ap-
proximability. SIAM Journal on Computing (SICOMP), 28(1):164–191, 1998.

[5] J. Ward. Oblivious and non-oblivious local search for combinatorial optimization. University of Toronto
(Canada), 2012.

4

